分析 (1)根据向量的数量积公式和两角和与差的正弦和余弦公式,以及二倍角公式,化简即可求出函数的解析式,再根据正弦函数的性质即可求出答案,
(2)根据正弦函数的单调性即可求出函数的值域.
解答 解:(1)∵向量$\overrightarrow{a}$=(1,sinx),$\overrightarrow{b}$=(cos(2x+$\frac{π}{3}$),sinx),
∴函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}-\frac{1}{2}$cos2x=cos(2x+$\frac{π}{3}$)+sin2x-$\frac{1}{2}$cos2x=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$(1-cos2x)-$\frac{1}{2}$cos2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
得:-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
即f(x)在区间[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)上单调递增,
又x∈[0,2π],
∴f(x)在[0,$\frac{π}{3}$],[$\frac{5π}{6}$,$\frac{4π}{3}$]上单调递增;
(2)由(1)可知,f(x)在[0,$\frac{π}{3}$]上单调递增,
∴f(0)=sin(-$\frac{π}{6}$)+$\frac{1}{2}$=0,
f($\frac{π}{3}$)=sin($\frac{2π}{3}$-$\frac{π}{6}$)+$\frac{1}{2}$=$\frac{3}{2}$,
∴当x∈[0,$\frac{π}{3}$]时,函数f(x)的值域为[0,$\frac{3}{2}$].
点评 本题考查了向量的数量积公式和两角和与差的正弦和余弦公式,以及二倍角公式,和正弦函数的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不必要又不充分条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$ | B. | $f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$ | C. | f(x)=-3sinx | D. | f(x)=3cos2x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com