精英家教网 > 高中数学 > 题目详情
15.若sinα=2cosα,则sin2α+2cos2α的值为$\frac{6}{5}$.

分析 由条件利用同角三角函数的基本关系,求得要求式子的值.

解答 解:∵sinα=2cosα,∴tanα=2,则sin2α+2cos2α=$\frac{{sin}^{2}α+{2cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+2}{{tan}^{2}α+1}$=$\frac{4+2}{4+1}$=$\frac{6}{5}$,

故答案为:$\frac{6}{5}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过点(2,$\sqrt{3}$),则双曲线的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-3x)ex
(1)求函数f(x)的图象在点(1,f(1))处的切线方程;
(2)当k<1时,判断方程$\frac{xf(x)}{{e}^{x}}$+x=kx-4的实根个数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算
(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
(2)log25625+lg$\frac{1}{100}$+lne.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα是关于x的方程2x2-x-1=0的一个实根,且α是第三象限角.
(1)求$\frac{2sinα-cosα}{sinα+cosα}$的值;
(2)求cosα+sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,-$\frac{π}{2}<ϕ<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α)=$\frac{6}{5}$,0<α<$\frac{π}{2}$,求$f(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x、y为自然数,且满足方程9x2-4y2=5,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用数学归纳法证明:对于任意自然数n,数11n+2+122n+1是133的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax2+1在x=2处取得极值,求:
(1)实数a的值;
(2)f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

同步练习册答案