精英家教网 > 高中数学 > 题目详情
3.计算
(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
(2)log25625+lg$\frac{1}{100}$+lne.

分析 (1)利用有理数指数的性质、运算法则求解.
(2)利用对数的性质、运算法则求解.

解答 解:(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
=1+$\frac{1}{4}$×$\frac{2}{3}$-0.1
=$\frac{16}{15}$.
(2)log25625+lg$\frac{1}{100}$+lne
=2-2+1
=1.

点评 本题考查指数式、对数式的化简求值,是基础题,解题时要认真审题,注意指数、对数的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)过点A(-5,-4)作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5,求其直线方程.(2)已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆x2+y2-2x+4y+1=0,则原点O在(  )
A.圆内B.圆外C.圆上D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1),N(2$\sqrt{2}$,0)两点.
(1)求椭圆E的方程;
(2)已知定点Q(0,2),P点为椭圆上的动点,求|PQ|最大值及相应的P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=a2x-1-2(a>0且a≠1),无论a取何值,函数图象恒过一个定点,则定点坐标为$(\frac{1}{2},-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列幂函数中:①$y={x^{\frac{1}{2}}}$;②y=x-2;③$y={x^{\frac{4}{3}}}$;④$y={x^{\frac{1}{3}}}$;其中既是偶函数,又在区间(0,+∞)上单调递增的函数是③.(填相应函数的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若sinα=2cosα,则sin2α+2cos2α的值为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若抛物线的焦点为(2,2),准线方程为x+y-1=0,求此抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{3}}{3}$,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,求椭圆的标准方程.

查看答案和解析>>

同步练习册答案