精英家教网 > 高中数学 > 题目详情
已知函数:f(x)=x+
4x

(1)判定f(x)的奇偶性,并证明;
(2)当x>0时,判断f(x)在(0,2)和(2,+∞)上的单调性,并证明.
分析:(1)先确定函数的定义域,再利用奇函数的定义,证明函数f(x)=-f(-x),从而函数为奇函数;
(2)利用函数单调性的定义,设任意的x1,x2∈(0,2),当x1<x2时,利用作差法证明f(x1)-f(x2)>0,从而函数f(x)在(0,2)上为减函数,同理可证f(x)在(2,+∞)上为增函数
解答:解:(1)f(x)是奇函数,
因为对于任意的x(x≠0),
f(-x)=-x-
4
x
=-(x+
4
x
)=-f(x)

所以f(x)是奇函数        
(2)①当x>0时,f(x)的单调减区间为(0,2),
对于任意的x1,x2∈(0,2),当x1<x2
f(x1)-f(x2)=x1+
4
x1
-x2-
4
x2
=(x1-x2)•
x1x2-4
x1x2

因为0<x1x2<4,所以f(x1)-f(x2)>0
所以f(x)在(0,2)上为减函数      
②当x>0时,f(x)的单调增区间为(2,+∞),
对于任意的x1,x2∈(2,+∞),当x1<x2
f(x1)-f(x2)=x1+
4
x1
-x2-
4
x2
=(x1-x2)•
x1x2-4
x1x2

因为x1x2>4,所以f(x1)-f(x2)<0
所以f(x)在(2,+∞)上为增函数
点评:本题主要考查了证明函数奇偶性的方法,利用函数单调性的定义证明函数单调性的方法步骤,代数变形能力和逻辑推理能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)
为奇函数,设g(x)=f(x)+1,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π2
)
的最大值为3,f(x)的图象的相邻两对称轴间的距离为2,在y轴上的截距为2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•枣庄二模)已知函数y=
f(x),x>0
g(x),x<0
是偶函数,f(x)=logax的图象过点(2,1),则y=g(x)对应的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
f(x)
ex
(x∈R)
满足f′(x)>f(x),则f(1)与ef(0)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)-
1
2
是定义域为实数集R的奇函数,则f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+…+f(
2010
2011
)
的值为
1005
1005

查看答案和解析>>

同步练习册答案