精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当时,判断函数是否有极值;
(Ⅱ)若时,总是区间上的增函数,求实数的取值范围.

(1)没有
(2)

解析试题分析:解:(I)当时,上为增函数.
(Ⅱ)
(1)当时,上为增函数.
(2)当时,的增区间为
①若
②若,则,对恒成立,;又
综上所述:实数的取值范围为
考点:导数的运用
点评:主要是考查了导数在研究函数单调性中的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数)的图象在处的切线与轴平行.
(1)确定实数的正、负号;
(2)若函数在区间上有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(1)若,求函数的极值;
(2)若函数上单调递减,求实数的取值范围;
(3)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ) 若函数处的切线方程为,求实数的值.
(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是自然对数的底数,).
(Ⅰ)求的单调区间、最大值;
(Ⅱ)讨论关于的方程根的个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设l为曲线C:在点(1,0)处的切线.
(I)求l的方程;
(II)证明:除切点(1,0)之外,曲线C在直线l的下方

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,讨论的单调性;
(II)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极小值;
(Ⅱ)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数a满足1<a≤2,设函数f (x)=x3x2+a x.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于或等于10.

查看答案和解析>>

同步练习册答案