精英家教网 > 高中数学 > 题目详情
现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数月收入低于55百元的人数合计
赞成a=b=
不赞成c=d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(k2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(Ⅰ)根据题目得2×2列联表:
月收入不低于55百元人数月收入低于55百元人数合计
赞成a=3b=2932
不赞成c=7d=1118
合计104050
…(4分)
假设月收入以5500为分界点对“楼市限购政策”的态度没有差异,根据列联表中的数据,得到:
K2=
50(3×11-7×29)2
(3+7)(29+11)(3+29)(7+11)
≈6.27<6.635.
…(6分)
假设不成立.
所以没有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异…(8分)
(Ⅱ)设此组五人A,B,a,b,c,其A,B表示赞同者a,b,c表示不赞同者
从中选取两人的所有情形为:AB,Aa,Ab,Ac,Ba,Bb,Bc,ab,ac,bc,
其中至少一人赞同的有7种,故所求概率为P=
7
10
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某车间生产一种玩具,为了要确定加工玩具所需要的时间,进行了10次实验,数据如下:
玩具个数(x)2468101214161820
加工时间(y)471215212527313741
如回归方程
y
=
b
x+
a
的斜率是
b
,则它的截距是(  )
A.
a
=11
b
-22
B.
a
=11-22
b
C.
a
=22-11
b
D.
a
=22
b
-11

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:
广告支出x(单位:万元)1234
销售收入y(单位:万元)12284256
(Ⅰ)画出表中数据的散点图;
(Ⅱ)求出y对x的回归直线方程
?
y
=bx+a
,其中
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(
xi
-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x2i
-n
.
x
2
a=
.
y
-b
.
x
.

(Ⅲ)若广告费为9万元,则销售收入约为多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某产品的成本费用x与销售额y的统计数据如下表:
成本费用x(万元)2345
销售额y(万元)26394954
根据上表可得回归方程
y
=
b
x+
a
中的
b
为9.4,据此模型预报成本费用为6万元时销售额为(  )
A.72.0万元B.67.7万元C.65.5万元D.63.6万元

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有如下几个结论:
①相关指数R2越大,说明残差平方和越小,模型的拟合效果越好;
②回归直线方程:
y
=bx+a
一定过样本点的中心:(
.
x
.
y

③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适;
④在独立性检验中,若公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有(  )个.
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:

(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分成绩不小于100分合计
甲班a=______b=______50
乙班c=24d=2650
合计e=______f=______100
(Ⅱ)现从乙班50人中任意抽取3人,记ξ表示抽到测试成绩在[100,120)的人数,求ξ的分布列和数学期望Eξ.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.2046.6357.87910.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在独立性检验时计算的K2的观测值k=3.99,那么我们有______的把握认为这两个分类变量有关系.
P(K2≥k00.150.100.050.0250.0100.005
k02.0722.7063.845.0246.6357.879

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是(  )
A.(0,)B.(,1)C.(0,)D.(,1)

查看答案和解析>>

同步练习册答案