精英家教网 > 高中数学 > 题目详情
体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是(  )
A.(0,)B.(,1)C.(0,)D.(,1)
C
由已知条件可得P(X=1)=p,P(X=2)=(1-p)p,P(X=3)=(1-p)2p+(1-p)3=(1-p)2
则E(X)=P(X=1)+2P(X=2)+3P(X=3)=p+2(1-p)p+3(1-p)2=p2-3p+3>1.75,解得p>或p<,又由p∈(0,1),可得p∈(0,).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数月收入低于55百元的人数合计
赞成a=b=
不赞成c=d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(k2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量服从二项分布,则的值为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

袋中有5个黑球和3个白球,从中任取2个球,则其中至少有1个黑球的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是统计高三年级2 000名同学某次数学考试成绩的程序框图,S代表分数,若输出的结果是560,则这次考试数学分数不低于90分的同学的概率是(  )
A.0.28 B.0.38 C.0.72D.0.62

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P(ξ=12)=(  )
A.()10()2B.()9()2×
C.()9()2D.()9()2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为(  )
A.3B.4C.2和5 D.3和4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(Ⅰ)恰有2人申请A片区房源的概率;
(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.

查看答案和解析>>

同步练习册答案