精英家教网 > 高中数学 > 题目详情
设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为(  )
A.3B.4C.2和5 D.3和4
D
点P的所有可能值为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).
当n=2时,P点可能是(1,1);
当n=3时,P点可能是(1,2),(2,1);
当n=4时,P点可能是(1,3),(2,2);
当n=5时,P点可能是(2,3).
即事件C3,C4的概率最大,故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.
(注:若三个数满足 ,则称为这三个数的中位数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是(  )
A.(0,)B.(,1)C.(0,)D.(,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中。已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.

(1)求小球落入A袋中的概率P(A);
(2)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一盒中共装有除颜色外其余均相同的小球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1个球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
 
文艺节目
新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
 
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为调查某校学生喜欢数学课的人数比例,采用如下调查方法:
(1)在该校中随机抽取100名学生,并编号为1,2,3,  ,100;
(2)在箱内放置两个白球和三个红球,让抽取的100名学生分别从箱中随机摸出一球,记住其颜色并放回;
(3)请下列两类学生举手:(ⅰ)摸到白球且号数为偶数的学生;(ⅱ)摸到红球且不喜欢数学课的学生.
如果总共有26名学生举手,那么用概率与统计的知识估计,该校学生中喜欢数学课的人数比例大约是(   )
A.88%B.90%C.92%D.94%

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X。若X=0就参加学校合唱团,否则就参加学校排球队。

(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案