精英家教网 > 高中数学 > 题目详情
一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.
(注:若三个数满足 ,则称为这三个数的中位数).
(1)(2)详见解析.

试题分析:(1)从9张卡片中任取3张,有和不同的结果,其中,3张卡片上的数字完全相同的有,由于是任取的,所以每个结果出现的可能性是相等的,故可根据古典概型的概率公式求得概率;
(2)由题设随机变量的所有可能取值有1,2,3;
表示抽出的三第卡片上的三个数字可以是
表示抽出的三第卡片上的三个数字可以是
表示抽出的三第卡片上的三个数字可以是
于是可用古典概型的概率公式求出的分布列与数学期望.
解:(1)由古典概型中的概率计算公式知所求概率为

(2)的所有可能值为1,2,3,且
,.
的分布列为

1
2
3




 
从而
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量服从二项分布,则的值为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P(ξ=12)=(  )
A.()10()2B.()9()2×
C.()9()2D.()9()2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为(  )
A.3B.4C.2和5 D.3和4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
①列出所有可能的抽取结果;
②求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次。某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为
ξ
0
2
3
4
5
P
0.03
P1
P2
P3
P4
 
(1)求q2的值;
(2)求随机变量ξ的数学期望E(ξ);
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(Ⅰ)恰有2人申请A片区房源的概率;
(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将掷一枚骰子一次得到的点数记为,则使得关于的方程有实数解的概率为_______.

查看答案和解析>>

同步练习册答案