精英家教网 > 高中数学 > 题目详情
设P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,且PA=PB=PC=1,则球O的表面积为
 
分析:先把三棱锥扩展为正方体,求出对角线的长,就是球的直径,然后求出表面积.
解答:解:先把三棱锥扩展为正方体,求出对角线的长,即:对角线边长为
3

所以球的半径为
3
2
,所以球的表面积为(
3
2
)
2
=3π
点评:本题考查学生的空间想象能力,以及公式的利用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,且PA=1,PB=
2
,PC=
6
,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,PA=1,PB=
6
,PC=3,则球O的体积为
32π
3
32π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两互相垂直,且PA=3,PB=4,PC=5,则球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,且PA=3,PB=4,PC=5,则球的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P,A,B,C是球O表面上的四点,满足PA,PB,PC两两相互垂直,且PA=PB=1,PC=2,则球O的表面积是
 

查看答案和解析>>

同步练习册答案