精英家教网 > 高中数学 > 题目详情
11.已知f(x)=$\frac{1-x}{1+x}$,x∈(-1,1).求证:
(1)f($\frac{1}{a}$)=-f(a)(a≠0);
(2)lgf(-a)=-lgf(a).

分析 (1)由f(x)的解析式,运用代入法,化简即可得证;
(2)由f(x)的解析式,结合对数的运算法则,即可得证.

解答 证明:(1)f(x)=$\frac{1-x}{1+x}$,x∈(-1,1),
可得f($\frac{1}{a}$)=$\frac{1-\frac{1}{a}}{1+\frac{1}{a}}$=$\frac{a-1}{a+1}$=-$\frac{1-a}{1+a}$=-f(a)(a≠0);
(2)由f(x)=$\frac{1-x}{1+x}$,x∈(-1,1),
可得lgf(-a)=lg$\frac{1+a}{1-a}$=-lg$\frac{1-a}{1+a}$=-lgf(a).
则lgf(-a)=-lgf(a).

点评 本题考查对数的运算性质的运用:证明恒等式,考查推理和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若椭圆C的离心率为$\frac{1}{2}$,右准线l的方程为x=4,求椭圆方程;
(2)若椭圆C的下顶点为B,P为椭圆C上任意一点,当P是椭圆C的上顶点时,PB最长,求椭圆C的离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F1、F2为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,过F2作椭圆长轴的垂线交椭圆于点P,若∠PF1F2=60°,则椭圆的离心率是2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ax3-x2+5x,a∈R.
(1)当0<a≤$\frac{1}{15}$时,求函数f(x)的单调区间;
(2)设φ(x)=($\frac{1}{3}-a$)x3+2x2-(2a+5)x,并且函数g(x)=f(x)+φ(x)在[-5,-3]上是增函数,求a的取值范围;
(3)若a≠0,且f(x)在区间(5,+∞)的一个子区间上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.二次函数f(x)=ax2+bx+c的导函数为f′(x),已知f′(0)>0,且对任意实数x,有f(x)≥0,则$\frac{f(1)}{f′(0)}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线3x+$\sqrt{3}$y-1=0的倾斜角为(  )
A.60°B.30°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=cosx-x的零点在区间(k-1,k)(k∈Z)内,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\sqrt{x}$-2)7展开式中所有项的系数的和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|≥1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)=3,则|$\overrightarrow{c}$|的最小值是1,最大值是3.

查看答案和解析>>

同步练习册答案