精英家教网 > 高中数学 > 题目详情
设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,函数q:g(x)=x2-4x+3m不存在零点则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
f(x)在(-∞,+∞)内单调递增,
则f′(x)≥0在(-∞,+∞)上恒成立,
即3x2+4x+m≥0在(-∞,+∞)上恒成立,
即△1=16-12m≤0,即m≥
4
3

g(x)不存在零点,
则△2=16-12m<0,即m>
4
3

故p成立q不一定成立,q成立p一定成立,故p是q的必要不充分条件.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,q:m≥
8x
x2+4
对任意x>0恒成立,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:f (x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,q:m≥
4
3
,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,q:m>
43
,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,q:m>
4
3
,则¬p是¬q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:f(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,q:m≤-
4
3
,则p是q的(  )

查看答案和解析>>

同步练习册答案