精英家教网 > 高中数学 > 题目详情
15.已知F是抛物线x2=y的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到x轴的距离为(  )
A.$\frac{3}{4}$B.1C.$\frac{5}{4}$D.$\frac{7}{4}$

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点纵坐标,求出线段AB的中点到x轴的距离.

解答 解:抛物线x2=y的焦点F(0,$\frac{1}{4}$)准线方程y=-$\frac{1}{4}$,
设A(x1,y1),B(x2,y2
∴|AF|+|BF|=y1+$\frac{1}{4}$+y2+$\frac{1}{4}$=3
解得y1+y2=$\frac{5}{2}$,
∴线段AB的中点纵坐标为$\frac{5}{4}$,
∴线段AB的中点到x轴的距离为$\frac{5}{4}$,
故选:C.

点评 本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知两定点F1(-4,0),F2(4,0),点P是平面上一动点,且|PF1|+|PF2|=9,则点P的轨迹是(  )
A.B.直线C.椭圆D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2+$\frac{3}{2}$)(x+a)(a∈R).
(Ⅰ)若函数f(x)的图象上有与x轴平行的切线,求a的范围;
(Ⅱ)若f′(-1)=0.证明:对任意的x1,x2∈,不等式|f(x1)-f(x2)|≤$\frac{5}{16}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若0<x1<x2<1,则(  )
A.${x_2}{e^{x_1}}>{x_1}{e^{x_2}}$B.${x_2}{e^{x_1}}<{x_1}{e^{x_2}}$
C.lnx2-lnx1>2x2-2x1D.lnx2-lnx1<2x2-2x1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x3+3x2+a,其中a∈R.
(1)求函数f(x)的单调区间;
(2)若函数f(x)的图象与直线y=12x相切,求a的值;
(3)是否存在相异的正实数m,n,使得f(m)=12m,f(n)=12n?若存在,试确定实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2和上顶点B在直线3x+$\sqrt{3}$y-3=0上,M、N为椭圆C上不同两点,且满足kBM•kBN=$\frac{1}{4}$.
(1)求椭圆C的标准方程;
(2)证明:直线MN恒过定点;
(3)求△BMN的面积的最大值,并求此时MN直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α的终边经过点(-4,-3),那么tanα等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线x+2ay-1=0与直线x-4y=0平行,则a的值为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱锥P-ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为$\frac{π}{6}$.
(1)求三棱锥P-ABC的体积;
(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案