【题目】如图,圆柱的轴截面
是边长为2的正方形,点P是圆弧
上的一动点(不与
重合),点Q是圆弧
的中点,且点
在平面
的两侧.
![]()
(1)证明:平面
平面
;
(2)设点P在平面
上的射影为点O,点
分别是
和
的重心,当三棱锥
体积最大时,回答下列问题.
(i)证明:
平面
;
(ii)求三棱锥
的体积.
【答案】(1)证明见解析(2)(i)证明见解析(ii)![]()
【解析】
(1)由
,
可得
平面
,即可证明;
(2)(i)连接
并延长交
于点M,连接
并延长交
于点N,连接
,利用平行线分线段成比例可得
,即可得
得证;
(ii)根据
即可求解.
(1)证明:因为
是轴截面,
所以
平面
,所以
,
又点P是圆弧
上的一动点(不与
重合),且
为直径,
所以
,
又
,
平面
,
平面
,
所以
平面
,
平面
,
故平面
平面
.
(2)当三棱锥
体积最大时,点P为圆弧
的中点.所以点O为圆弧
的中点,
所以四边形
为正方形,且
平面
.
(i)证明:连接
并延长交
于点M,连接
并延长交
于点N,连接
,
![]()
则
,
因为
分别为三角形的重心,所以
,
所以
,
所以
,
又
平面
,
平面
,
所以
平面
.
(ii)因为
平面
,
所以
,
又
,
,
所以
平面
,
因为
,
所以
平面
,即
平面
,即
是三棱锥
的高.
又
,
,
所以
.
科目:高中数学 来源: 题型:
【题目】近年来,随着
网络的普及和智能手机的更新换代,各种方便的
相继出世,其功能也是五花八门.某大学为了调查在校大学生使用
的主要用途,随机抽取了
名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:
①可以估计使用
主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;
②可以估计不足
的大学生使用
主要玩游戏;
③可以估计使用
主要找人聊天的大学生超过总数的
.
其中正确的个数为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对
增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合下图,下列说法正确的是( )
![]()
A.5G的发展带动今后几年的总经济产出逐年增加
B.设备制造商的经济产出前期增长较快,后期放缓
C.设备制造商在各年的总经济产出中一直处于领先地位
D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在
实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.
![]()
(1)用样本估计总体,以频率作为概率,若在
两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农场为了提高某品种水稻的产量,进行良种优选,在同一试验田中分两块种植了甲乙两种水稻.为了比较甲乙两种水稻的产量,现从甲乙两种水稻中各随机选取20株成熟水稻.根据每株水稻颗粒的重量(单位:克)绘制了如下茎叶图:
![]()
(1)根据茎叶图判断哪种水稻的产量更高?并说明理由;
(2)求40株水稻颗粒重量的中位数
,并将重量超过
和不超过
的水稻株数填入下面的列联表:
超过 | 不超过 | |
甲种水稻 | ||
乙种水稻 |
(3)根据(2)中的列联表,能否有
的把握认为两种水稻的产量有差异?附:
;
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
由方程到
确定,对于函数
给出下列命题:
①对任意![]()
,都有
恒成立:
②![]()
,使得
且
同时成立;
③对于任意![]()
恒成立;
④对任意,![]()
![]()
,
都有
恒成立.其中正确的命题共有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市为了了解“微信支付”与“支付宝支付”的情况(“微信支付”与“支付宝支付”统称为“移动支付”),对消费者在该超市在2019年1-6月的支付方式进行统计,得到如图所示的折线图,则下列判断正确的是( )
①这6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多
②这6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大
③这6个月中4月份平均每天使用“移动支付”的次数最多
④2月份平均每天使用“移动支付”比5月份平均每天使用“移动支付”的次数多
![]()
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com