精英家教网 > 高中数学 > 题目详情

【题目】已知实数x,y满足不等式组 ,若目标函数z=kx+y仅在点(1,1)处取得最小值,则实数k的取值范围是 (  )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)

【答案】B
【解析】解:作出不等式组对应的平面区域如图:(阴影部分OAB).

由z=kx+y得y=﹣kx+z,即直线的截距最大,z也最大.

平移直线y﹣kx+z,要使目标函数z=kx+y取得最小值时的唯一最优解是(1,1),

即直线y=﹣kx+z经过点A(1,1)时,截距最小,

由图象可知当阴影部分必须在直线y=﹣kx+z的右上方,

此时只要满足直线y=﹣kx+z的斜率﹣k大于直线OA的斜率即可

直线OA的斜率为1,

∴﹣k>1,所以k<﹣1.

所以答案是:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)=x3+ax2+x在R上是增函数;命题q:若函数g(x)=ex﹣x+a在区间[0,+∞)没有零点.
(1)如果命题p为真命题,求实数a的取值范围;
(2)命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为常数,函数f(x)=x(lnx﹣2ax)有两个极值点,则a的取值范围为(  )
A.(﹣∞,1)
B.
C.(0,1)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC是等边三角形,边长为4,BC边的中点为D,椭圆W以A,D为左、右两焦点,且经过B、C两点.
(1)求该椭圆的标准方程;
(2)过点D且x轴不垂直的直线l交椭圆于M,N两点,求证:直线BM与CN的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2﹣x﹣1)ex
(1)求函数f(x)的单调区间.
(2)若方程a( +1)+ex=ex在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中P﹣ABCD,底面ABCD为边长为 的正方形,PA⊥BD.

(1)求证:PB=PD;
(2)若E,F分别为PC,AB的中点,EF⊥平面PCD,求直线PB与平面PCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是圆O:x2+y2=4上的动点,点A(4,0),若直线y=kx+1上总存在点Q,使点Q恰是线段AP的中点,则实数k的取值范围为

查看答案和解析>>

同步练习册答案