【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是 .
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为 ,在同一平面直角坐标系中,将曲线C上的点按坐标变换 得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系. (Ⅰ)求曲线C'的极坐标方程;
(Ⅱ)若过点 (极坐标)且倾斜角为 的直线l与曲线C'交于M,N两点,弦MN的中点为P,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P(x,y)与一定点F(1,0)的距离和它到一定直线l:x=4的距离之比为 .
(1)求动点P(x,y)的轨迹C的方程;
(2)己知直线l':x=my+1交轨迹C于A、B两点,过点A、B分别作直线l的垂线,垂足依次为点D、E.连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出定点的坐标,并给予证明;否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在三角形ABC中,AB<AC,∠BAC=90°,边AB,AC的长分别为方程 的两个实数根,若斜边BC上有异于端点的E,F两点,且EF=1,∠EAF=θ,则tanθ的取值范围为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=4x和直线l:x=-1.
(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;
(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[ , ],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分别求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com