(本小题共13分)
已知数列
的前
项和为
,且
.
数列
满足
(
),且
,
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)设
,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值;
(Ⅲ)设
是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
(本小题共13分)
已知函数
的反函数为
,数列
和
满足:
,
,
函数
的图象在点
处的切线在
轴上的截距为
.
(1)求数列{
}的通项公式;
(2)若数列
的项仅
最小,求
的取值范围;
(3)令函数
,数列
满足:
,且
,其中
.证明:
.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市海淀区高三下学期期中考试数学理卷 题型:解答题
(本小题共13分)
已知每项均是正整数的数列
:
,其中等于
的项有
个
,
设
,
.
(Ⅰ)设数列
,求
;
(Ⅱ)若数列
满足
,求函数
的最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题
(本小题共13分)
已知函数
,
为函数
的导函数.
(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是
,求
的值;
(Ⅱ)若函数
,求函数
的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com