精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①“直线a、b为异面直线”的充分非必要条件是“直线a、b不相交”.
②“直线l⊥平面α内的所有直线”的充要条件是“l⊥α”.
③“直线a⊥b”的充分非必要条件是“a垂直于b在平面α内的射影”.
④设α⊥β,a?β,则“a∥β”的充分非必要条件是“a⊥α”.
请填出所有正确命题的序号
②④
②④
分析:根据充要条件的定义,由异面直线的定义及空间线面关系的分类,可以判断①的真假;根据线面垂直的性质及定义,可以判断②的真假;根据线线垂直的判定方法,可以判断③的真假;根据线面垂直的判定,线面平行的判定,可以判断④的真假;进而得到答案.
解答:解:“直线a、b为异面直线”⇒“直线a、b不相交”为真命题;“直线a、b不相交”⇒“直线a、b为异面直线”为假命题,故“直线a、b为异面直线”的必要不充分条件是“直线a、b不相交”;故①错误;
“直线l⊥平面α内的所有直线”⇒“l⊥α”为真命题;“l⊥α”⇒“直线l⊥平面α内的所有直线”也为真命题,故“直线l⊥平面α内的所有直线”的充要条件是“l⊥α”;故②正确;
“直线a⊥b”⇒“a垂直于b在平面α内的射影”为假命题;“a垂直于b在平面α内的射影”⇒“直线a⊥b”为假命题,故“直线a⊥b”的非充分非必要条件是“a垂直于b在平面α内的射影”;故③错误;
当α⊥β,a?β,“a∥β”⇒“a⊥α”为假命题;“a⊥α”⇒“a∥β”为真命题,故当α⊥β,a?β时,“a∥β”的充分非必要条件是“a⊥α”;故④正确;
故答案为:②④
点评:本题考查的知识点是平面的基本性质及推论,空间直线与平面,直线与直线,平面与平面位置关系的判断,其中熟练掌握空间线面关系的判定方法及几何特征是解答本题的关键,另外,本题的一个易错题,第一易忽略P是Q的充分不必要条件与P的充分不必要条件是Q之间的区别,二是易忽略三垂线定理中a?α的限制,而误判断③正确.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案