精英家教网 > 高中数学 > 题目详情
集合A={x|x≤-2},集合B={x|x≥a},如果A∩B≠∅,那么a的范围是(  )
分析:根据A∩B=∅,即可确定a的范围.
解答:解:因为集合A={x|x≤-2},集合B={x|x≥a},
所以要使A∩B≠∅,则a≤-2.
故选D.
点评:本题主要考查集合关系的应用,利用数形结合是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},则集合A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>1},B={x|x2-2x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)1、已知全集∪=R,集合A={x|x2≤4},B={x|x<1},则集合A∪?UB等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},则集合A∩B=(  )
A.{x|x>0或x<-3}B.{x|x>0或x<-1}C.{x|x>3或x<-1}D.{x|2<x<3}

查看答案和解析>>

同步练习册答案