精英家教网 > 高中数学 > 题目详情
6.已知函数y=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

分析 判断点与曲线的关系,设出切点坐标,利用导数求解斜率,推出切线方程,代入点的坐标,化简求解即可.

解答 解:曲线方程为y=x3-3x,点A(0,16)不在曲线上,
设切点为M(x0,y0),则点M的坐标满足${y_0}=x_0^3-3{x_0}$,
因$f'({x_0})=3(x_0^2-1)$,故切线的方程为$y-{y_0}=3(x_0^2-1)(x-{x_0})$.
化简得$x_0^3=-8$,解得x0=-2.
所以切点为M(-2,-2),切线方程为9x-y+16=0.

点评 本题考查曲线的切线方程的求法,判断点与曲线的位置关系是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2x+3x的零点所在的一个区间(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在正四棱锥S-ABCD中,O为顶点S在底面的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是(  )
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{2}{x^2}-ax+(a-1)lnx$.
(1)当a=2,求函数f(x)的图象在点(1,f(1))处的切线方程;
(2)当a>2时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过抛物线x2=4y的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别为p,q,则$\frac{1}{p}+\frac{1}{q}$等于(  )
A.$\frac{1}{2}$B.2C.1D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足$\left\{\begin{array}{l}x-y≤1\\ x≥0\\ y≤0\end{array}\right.$,则z=x+y的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为3,其渐近线与圆x2+y2-6y+m=0相切,则m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.将参数方程$\left\{\begin{array}{l}{x=\frac{1}{2}({e}^{t}+{e}^{-t})cosθ}\\{y=\frac{1}{2}({e}^{t}-{e}^{-t})sinθ}\end{array}\right.$(θ为参数,t为常数)化为普通方程(结果可保留e).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数y=(a-1)x在(-∞,+∞)上为减函数,则实数a满足(  )
A.a<1B.1<a<2C.1<a<$\sqrt{2}$D.0<a<2

查看答案和解析>>

同步练习册答案