精英家教网 > 高中数学 > 题目详情
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q.
(1)将tanq表示为x的函数;
(2)求点D的位置,使q取得最大值.
(1);(2)点距点6km.

试题分析:(1)由图可知,因此为了求,可通过求,下面关键要求,为止作,垂足为,这时会发现随的取值不同,点可能在线段上,也可能在线段外,可能为锐角也可能为钝角,这里出现了分类讨论,作延长线于,由已知可求出,这就是分类的分界点;(2)由(1)求得,要求它的最大值,可以采取两种方法,一种是由于分子是一次,分母是二次的,可把分子作为整体,分子分母同时除以(当然分母也已经化为的多项式了),再用基本不等式求解,也可用导数知识求得最大值.
(1)过A分别作直线CD,BC的垂线,垂足分别为E,F.
由题知,AB=4.5,BC=4,∠ABF=90o-60o=30o
所以CE=AF=4.5×sin30o,BF=4.5×cos30o
AE=CF=BC+BF=
因为CD=x(x>0),所以tan∠BDC=
当x>时,ED=x-,tan∠ADC=(如图1);

当0<x<时,ED=-x,tan∠ADC=-(如图2).            4分
所以tanq=tan∠ADB=tan(∠ADC-∠BDC)=
,其中x>0且x≠
当x=时tanq=,符合上式.
所以tanq=( x>0)                                      8分
(2)(方法一)tanq==,x>0.      11分
因为4(x+4)+-41≥2-41=39,
当且仅当4(x+4)=,即x=6时取等号.
所以当x=6时,4(x+4)+-41取最小值39.
所以当x=6时,tanq取最大值.                                      13分
由于y=tanx在区间(0,)上是增函数,所以当x=6时,q取最大值.
答:在海湾一侧的海岸线CT上距C点6km处的D点处观看飞机跑道的视角最大  14分
(方法二)tanq=f(x)=
f ¢(x)==-,x>0.
由f ¢(x)=0得x=6.                                                      11分
当x∈(0,6)时,f ¢(x)>0,函数f(x)单调递增;当x∈(6,+∞)时,f ¢(x)<0,此时函数f(x)单调递减.
所以函数f(x)在x=6时取得极大值,也是最大值f(6)=.                    13分
由于y=tanx在区间(0,)上是增函数,所以当x=6时,q取最大值.
答:在海湾一侧的海岸线CT上距C点6km处的D点处观看飞机跑道的视角最大.  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(Ⅰ)若点P的坐标为,求f(θ)的值;
(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中为正整数,均为常数,曲线处的切线方程为.
(1)求的值;     
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)计算的值;
(2)若关于的不等式:在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足
()百米,百米.

(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=,x∈(-π,0)∪(0,π)的图象可能是下列图象中的(  )
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2013•天津)设a+b=2,b>0,则当a= _________ 时,取得最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线与函数的图像分别交于点,则当达到最小时的值为(   )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间是________________.

查看答案和解析>>

同步练习册答案