精英家教网 > 高中数学 > 题目详情
给出下列命题中
①向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为30°;
a
b
>0,是
a
b
的夹角为锐角的充要条件;
③将函数y=|x-1|的图象按向量
a
=(-1,0)平移,得到的图象对应的函数表达式为y=|x|;
④若(
AB
+
AC
)•(
AB
-
AC
)  =0
,则△ABC为等腰三角形;
以上命题正确的个数是(  )
A、4个B、1个C、3个D、2个
分析:对于①,当
a
b
中有一个为0时,结论不成立.对②
a
b
>0时,
a
b
的夹角为锐角或零角.
按向量平移的意义③正确.由向量的数量积满足分配律运算,以及
AB
2
=|AB|2,故④正确.
解答:解:对于①,取特值零向量时,命题错误,若前提为非零向量由向量加减法的平行四边形法则与夹角的概念正确.
对②
a
b
>0时,
a
b
的夹角为锐角或零角,不一定是锐角,故充分性不成立.
对于③,注意按向量平移的意义,就是图象向左移1个单位,故结论正确.
对于④;由于向量的数量积满足分配律运算,故结论正确,
故选D.
点评:本题考查两个向量的加减混合运算及其几何意义,用两个向量的数量积表示两个向量的夹角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题中
①向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|
,则
a
a
+
b
的夹角为300
a
b
>0,是
a
b
的夹角为锐角的充要条件;
③将函数y=|x-1|的图象按向量
a
=(-1,0)平移,得到的图象对应的函数表达式为y=|x|;
④若(
AB
+
AC
)•(
AB
-
AC
)=0,则△ABC为等腰三角形;
以上命题正确的是
 
(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题中
①向量
a
b
|
a
|=|
b
|=|
a
-
b
|
,则
a
|
a
+
b
|
角为30°;
a
b
>0,是
a
b
夹角为锐角的充要条件;
③将y=|x-1|的图象按向量
a
=(-1,0)平移,得到的图象对应的函数表达式为y=|x|;
④若
AB
BC
+
AB2
=0,△ABC直角三角形.
以上命题正确的是
①③④
①③④
(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题中

① 向量满足,则的夹角为

>0,是的夹角为锐角的充要条件;

③ 将函数y =的图象按向量=(-1,0)平移,得到的图象对应的函数表达式为y =

④ 若,则为等腰三角形;以上命题正确的是               (注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010年江西省九江市都昌二中高考数学模拟试卷(文科)(解析版) 题型:解答题

给出下列命题中
①向量满足,则的夹角为30
>0,是的夹角为锐角的充要条件;
③将函数y=|x-1|的图象按向量=(-1,0)平移,得到的图象对应的函数表达式为y=|x|;
④若(+)•(-)=0,则△ABC为等腰三角形;
以上命题正确的是    (注:把你认为正确的命题的序号都填上)

查看答案和解析>>

同步练习册答案