精英家教网 > 高中数学 > 题目详情
13.若一元二次方程(m-1)x2+2(m+1)x-m=0有两个正根,求m的取值范围.

分析 由条件利用二次函数的性质求得实数m取值的范围.

解答 解:关于x的一元二次方程(m一1)x2+2(m+1)x-m=0有两个正根,
∴$\left\{\begin{array}{l}{4(m+1)^{2}+4m(m-1)≥0}\\{-\frac{2(m+1)}{m-1}>0}\\{-\frac{m}{m-1}>0}\end{array}\right.$,求得0<m<1.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,求球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.比较下列各组三角函数值的大小:
  (1)sin35°,sin55°;
  (2)cos$\frac{3π}{5}$,cos$\frac{4π}{5}$;
  (3)tan1,tan2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数g(x)=x+1,x∈[0,2],f(x)=x2+mx+2.
(1)若方程f(x)=-$\frac{1}{2}$m有两个实根x1,x2,求x12+x22的取值范围;
(2)若函数F(x)=f(x)-g(x)有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,与函数y=-x的奇偶性,单调性都相同的是(  )
A.y=$\frac{1}{x}$B.y=-sinxC.y=-lnxD.y=lg($\sqrt{{x}^{2}+1}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-3\\;x≤0}\\{{x}^{\frac{1}{2}}\\;x>0}\end{array}\right.$,若f(a)>1,则实数a的取值范围是a<-2或a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在某次测量中得到的A样本数据如下;74,74,79,79,86,87,87,90,91,92.若B样本数据恰好是A样本数据每个都加5后所得数据,则A,B两样本的下列数字特征对应相同的是(  )
A.众数B.平均数C.中位数D.标准差

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{cosx}{\sqrt{1-si{n}^{2}x}}$+$\frac{\sqrt{1-co{s}^{2}x}}{sinx}$的值域为{2,0,-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图:在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC.四边形BB1C1C为正方形,设AB1的中点为D,B1C∩BC1=E.求证
(1)DE∥平面AA1C1C
(2)BC1⊥平面AB1C.

查看答案和解析>>

同步练习册答案