【题目】已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且满足asinB= bcosA.
(1)求A的大小;
(2)若a=7,b=5,求△ABC的面积.
【答案】
(1)解:依正弦定理可将asinB= bcosA化为:sinAsinB= sinBcosA
因为在△ABC中,sinB>0,
所以sinA= cosA,即tanA= ,
∵0<A<π,
∴A= .
(2)解:因为,a=7,b=5,A= ,
所以,由余弦定理可得:49=25+c2﹣2× ,
整理可得:c2﹣5c﹣24=0,解得:c=8,或﹣3(舍去),
所以,S△ABC= bcsinA= =10 .
【解析】1、根据题意利用正弦定理可得tanA= ,在△ABC中,0<A<π,因此A= .
2、利用余弦定理可求出c=8,再根据三角形面积公式S△ABC= bcsinA即得结果。
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以 为概率的事件是( )
A.都不是一等品
B.恰有一件一等品
C.至少有一件一等品
D.至多一件一等品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图的平面多边形ACBEF中,四边形ABEF是矩形,点O为AB的中点,△ABC中,AC=BC,现沿着AB将△ABC折起,直至平面ABEF⊥平面ABC,如图,此时OE⊥FC.
(1)求证:OF⊥EC;
(2)若FC与平面ABC所成角为30°,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex , g(x)=lnx
(1)若曲线h(x)=f(x)+ax2﹣ex(a∈R)在点(1,h(1))处的切线垂直于y轴,求函数h(x)的单调区间;
(2)若函数 在区间(0,2)上无极值,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若摸出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com