精英家教网 > 高中数学 > 题目详情
设函数,g(x)=2x2+4x+c.
(1)试问函数f(x)能否在x=﹣1时取得极值?说明理由;
(2)若a=﹣1,当x∈[﹣3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
解:(1)由题意f'(x)=x2﹣2ax﹣a, 假设在x=﹣1时f(x)取得极值,则有f'(﹣1)=1+2a﹣a=0,
∴a=﹣1, 而此时,f'(x)=x2+2x+1=(x+1)2≥0,函数f(x)在R上为增函数,无极值.
这与f(x)在x=﹣1有极值矛盾,所以f(x)在x=﹣1处无极值;
(2)令f(x)=g(x),则有x3﹣x2﹣3x﹣c=0,
∴c=x3﹣x2﹣3x,
设F(x)=x3﹣x2﹣3x,G(x)=c,
令F'(x)=x2﹣2x﹣3=0,
解得x=﹣1或x=3.
列表如下:

由此可知:F(x)在(﹣3,﹣1)、(3,4)上是增函数,在(﹣1,3)上是减函数.
当x=﹣1时,F(x)取得极大值
当x=3时,F(x)取得极小值F(﹣3)=F(3)=﹣9,而
如果函数f(x)与g(x)的图象有两个公共点,则函数F(x)与G(x)有两个公共点,
所以,或c=﹣9.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3a2x+b(a,b∈R)在x=2处的切线方程为y=9x-14.
(1)求函数f(x)的解析式;
(2)令函数g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求实数k的取值范围;
②设函数y=g(x)的图象与直线x=2交于点P,试问:过点P是否可作曲线y=f(x)的三条切线?若可以,求出k的取值范围;若不可以,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知函数f(x)=ex-a(x-1),x∈R.
(1)若实数a>0,求函数f(x)在(0,+∞)上的极值;
(2)记函数g(x)=f(2x),设函数y=g(x)的图象C与y轴交于P点,曲线C在P点处的切线与两坐标轴所围成的图形的面积为S(a),求当a>1时S(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=g(x)为奇函数,f(x)=2+g(x)的最大值为M,最小值为m,则M+m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x-1),x∈R,其中a为实数.
(1)若实数a>0,求函数f(x)在(0,+∞)上的极值.
(2)记函数g(x)f(2x),设函数y=g(x)的图象C与y轴交于P点,曲线C在P点处的切线与两坐标轴所围成的图形的面积为S(a),当a>1时,求S(a)的最小值;
(3)当x∈(0,+∞)时,不等式f(x)+f′(x)+x3-2x2≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”求出所有a的值;若不具有“P(a)性质”,请说明理由.
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)设函数y=g(x)具有“P(±1)性质”,且当-
1
2
≤x≤
1
2
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.

查看答案和解析>>

同步练习册答案