精英家教网 > 高中数学 > 题目详情

(本题满分14分)

    已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2;且

    点在椭圆C上.

    (1)求椭圆C的方程;

    (2)过F1的直线l与椭圆C相交于A、B两点,且△AF2B的面积为,求以F2为圆

       心且与直线l相切的圆的方程.

 

 

【答案】

解:(1)设椭圆的方程为,由题意可得:

    椭圆C两焦点坐标分别为F1(-1,0),F2(1,0).  ………………2分

   

    ,又c=1, b2=4-l=3,

     故椭圆的方程为.…………4分

(2)当直线l⊥x轴,计算得到:

,不符合题意,…………………6分

当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),

,消去y得

显然△>O成立,设

   ………………8分

 '  …………………………………………10分

又圆F2的半径     ……………………………11分

所以

化简,得,即,解得k=±1,……l3分

所以,,故圆F2的方程为:(x-1)2+y2=2.……………l4分

(2)另解:设直线l的方程为x=ty-1,

,消去x得,△>O恒成立,

,则

所以

又圆F2的半径为

所以,解得t2=1,

所以.故圆F2的方程为:

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案