精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>0)的左、右焦点为F1、F2,离心率为,P为椭圆C上的任一点,△PF1F2的周长为4+2
(1)求椭圆C的方程;
(2)设过点D(0,)的直线l与椭圆C交于P、Q两点,若直线OP、PQ、OQ的斜率依次成等比数列(O为坐标原点),求直线l的方程.
【答案】分析:(1)利用椭圆的定义及其离心率计算公式、b2=a2-c2即可得出.
(2)设直线l的方程为:.与椭圆的方程联立即可得到根与系数的关系、再利用斜率计算公式及其等比数列的性质即可得出.
解答:解:(1)由题意可得,解得,∴b2=a2-c2=1.
∴椭圆C的方程为
(2)由题意可知:直线l的斜率存在且不为0,又过点,故可设直线l的方程为:
联立 消去y得:
,得:
设P(x1,y1),Q(x2,y2),则
y1y2==+
∵直线OP,PQ,OQ的斜率依次成等比数列,∴,即

,解得:,即
∴直线l的方程为:
点评:熟练掌握椭圆的定义及其离心率计算公式、b2=a2-c2、直线与椭圆相交问题转化为方程联立即可得到根与系数的关系、斜率计算公式及其等比数列的性质等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)经过(1,1)与()两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

同步练习册答案