精英家教网 > 高中数学 > 题目详情
(2012•香洲区模拟)有一个各棱长均为1的正四棱锥,先用一张正方形包装纸将其完全包住,不能剪裁,可以折叠,那么包装纸的最小面积为
2+
3
2+
3
分析:本题考查的是四棱锥的侧面展开问题.在解答时,首先要将四棱锥的四个侧面沿底面展开,观察展开的图形易知包装纸的对角线处在什么位置时,包装纸面积最小,进而获得问题的解答.
解答:解:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:
当以PP′为正方形的对角线时,
所需正方形的包装纸的面积最小,此时边长最小.
设此时的正方形边长为x则:(PP′)2=2x2
又因为 PP′=1+2×
3
2
=1+
3

∴(1+
3
)2=2x2,
解得:x=
6
+
2
2

包装纸的最小面积S=x2=(
6
+
2
2
2=2+
3

故答案为:2+
3
点评:本题考查的是棱锥的结构特征、四棱锥的侧面展开问题.在解答的过程当中充分体现了侧面展开的处理问题方法、图形的观察和分析能力以及问题转化的思想.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•香洲区模拟)如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知向量
a
b
满足|
a
|=1,|
b
|=
2
a
b
=1
,则
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(I)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1,A2,点M是椭圆上异于Al,A2的任意一点,设直线MA1,MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)如图,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=4,BC=4,BB1=3,M、N分别是B1C1和AC的中点.
(1)求异面直线AB1与C1N所成的角;
(2)求三棱锥M-C1CN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定义f(x)=
m
n

(1)求函数f(x)的表达式,并求其单调增区间;
(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.

查看答案和解析>>

同步练习册答案