精英家教网 > 高中数学 > 题目详情
(2013•德州二模)已知函数f(x)=a(x2-2x+1)+1nx+1.
(I)当a=-
14
时,求函数f(x)的单调区间;
(Ⅱ)若对?x∈[1,+∞)f(x)≥x恒成立,求实数a的取值范围.
分析:(I)求导函数,利用导数的正负,可得函数f(x)的单调区间;
(Ⅱ)对?x∈[1,+∞),f(x)≥x恒成立,等价于当x≥1时,a(x2-2x+1)+1nx-x+1≥0恒成立,令h(x)=a(x2-2x+1)+1nx-x+1,只需h(x)≥0,即可求实数a的取值范围.
解答:解:(I)当a=-
1
4
时,f(x)=-
1
4
(x2-2x+1)+1nx+1
f′(x)=-
(x-2)(x+1)
2x

∵x>0,x+1>0
∴当0<x<2时,f′(x)>0,当x>2时,f′(x)<0,
∴f(x)的单调递增区间为(0,2),单调递减区间为(2,+∞);
(II)当x≥1时,a(x2-2x+1)+1nx+1≥x恒成立,即当x≥1时,a(x2-2x+1)+1nx-x+1≥0恒成立
令h(x)=a(x2-2x+1)+1nx-x+1,只需h(x)≥0即可
求导函数,可得h′(x)=
(2ax-1)(x-1)
x
(x>1)
(1)若a≤0,∵x>1时,h′(x)<0
∴h(x)在(1,+∞)上单调递减
∴h(x)≤h(1)=0,不满足题意;
(2)若a>0,令h′(x)=0,可得x=
1
2a

①0<
1
2a
≤1,即a≥
1
2
时,h(x)在(1,+∞)上为增函数
∴x≥1时,h(x)≥h(1)=0,满足题意;
1
2a
>1
,即0<a<
1
2
,h(x)在(1,
1
2a
)上单调递减
∴1<x<
1
2a
时,h(x)≤h(1)=0,不满足题意;
综上,a的取值范围是[
1
2
,+∞).
点评:本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•德州二模)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,该双曲线与抛物线y2=16x的准线交于A,B两点,若|AB|=6
5
,则双曲线的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程
y
=0.68
x
+54.6


表中有一个数据模糊不清,请你推断出该数据的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)为了解某校教师使用多媒体进行教学的情况,将全校200名 教师按一学期使用多媒体进行教学的次数分成了[0,9),[10,19),[20,29),[30,39),[40,49)五层.现采用分层抽样从该校教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图,据此可知该校一学期使用多媒体进行教学的次数在[30,39)内的教师人数为
40
40

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下
等级 1 2 3 4 5
频率 0.05 m 0.15 0.35 n
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

同步练习册答案