精英家教网 > 高中数学 > 题目详情

已知函数数学公式把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为________.

an=n-1
分析:根据函数的零点的定义,构造两函数图象的交点,交点的横坐标即为函数的零点,再通过数列及通项公式的概念得所求的解.
解答:当x∈(-∞,0]时,由g(x)=f(x)-x=3x-1-x=0,得3x=x+1.令y=3x,y=x+1.在同一个坐标系内作出两函数在区间(-∞,0]上的图象,由图象易知交点为(0,1),故得到函数的零点为x=0.
当x∈(0,1]时,x-1∈(-1,0],f(x)=f(x-1)+1=3x-1-1+1=3x-1,由g(x)=f(x)-x=3x-1-x=0,得3x-1=x.令y=3x-1,y=x.在同一个坐标系内作出两函数在区间(0,1]上的图象,由图象易知交点为(1,1),故得到函数的零点为x=1.
当x∈(1,2]时,x-1∈(0,1],f(x)=f(x-1)+1=3x-1-1+1=3x-2+1,由g(x)=f(x)-x=3x-2+1-x=0,得3x-2=x-1.令y=3x-2,y=x-1.在同一个坐标系内作出两函数在区间(1,2]上的图象,由图象易知交点为(2,1),故得到函数的零点为x=2.
依此类推,当x∈(2,3],x∈(3,4],…,x∈(n,n+1]时,构造的两函数图象的交点依次为(3,1),(4,1),…,(n+1,1),得对应的零点分别为x=3,x=4,…,x=n+1.
故所有的零点从小到大依次排列为0,1,2,…,n+1.其对应的数列的通项公式为an=n-1.
故正确答案为:an=n-1.
点评:本题主要考查了函数零点的概念及零点的求法、数列的概念及简单表示;培养学生观察、分析、归纳、推理的能力;解题中使用了数形结合及分类讨论的数学方法和数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
3
x

(1)当x∈[
1
3
,3]
时,求f(x)的反函数g(x);
(2)求关于x的函数y=[g(x)]2-2ag(x)+3(a≤3)当x∈[-1.1]时的最小值h(a);
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间[p,q](p<q)使得函数在区间[p,q]上的值域为[p2,q2].
(Ⅰ)判断(2)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=
x2-1
+t(x≥1)是“和谐函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)=sinx+mcosx,把函数f(x)的图象向左平移数学公式个单位后得到函数g(x)的图象,且函数g(x)为奇函数,则m=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2012年山东省济宁市高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数为偶函数.
(I)求函数的单调减区间;
(II)把函数的图象向右平移个单位(纵坐标不变),得到函数g(x)的图象,求方程的解集.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省稽阳联谊学校高三联考数学试卷(文科)(解析版) 题型:选择题

已知函数f(x)=sinx+mcosx,把函数f(x)的图象向左平移个单位后得到函数g(x)的图象,且函数g(x)为奇函数,则m=( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案