精英家教网 > 高中数学 > 题目详情
19.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2015)3f(x+2015)+27f(-3)>0的解集是(-2018,-2015).

分析 根据题意,构造函数g(x)=x3f(x),x∈(-∞,0),利用导数判断g(x)的单调性,
再把不等式(x+2015)3f(x+2015)+27f(-3)>0化为g(x+2015)>g(-3),
利用单调性求出不等式的解集.

解答 解:根据题意,令g(x)=x3f(x),
其导函数为g′(x)=3x2f(x)+x3f′(x)=x2[3f(x)+xf′(x)],
∵x∈(-∞,0)时,3f(x)+xf′(x)>0,
∴g(x)>0,
∴g(x)在(-∞,0)上单调递增;
又不等式(x+2015)3f(x+2015)+27f(-3)>0可化为
(x+2015)3f(x+2015)>(-3)3f(-3),
即g(x+2015)>g(-3),
∴0>x+2015>-3;
解得-2015>x>-2018,
∴该不等式的解集是为(-2018,-2015).
故答案为:(-2018,-2015).

点评 本题考查了利用导数研究函数的单调性问题,也考查了利用函数的单调性求不等式的解集的问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知直线3x+ay=0(a>0)被圆(x-2)2+y2=4所截得的弦长为2,则a的值为(  )
A.3$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第16个图形中小正方形的个数是136.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$且$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若抛物线y2=mx的准线经过双曲线x2-$\frac{{y}^{2}}{3}$=1的一个焦点,则负数m等于(  )
A.-1B.-2C.-4D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知M(a,5-a,2a-1),N(1,a+2,2-a)两点,当|MN|取得最小值时,a的值是(  )
A.19B.$\frac{19}{14}$C.-$\frac{8}{7}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.上饶市政府为缓解城市交通压力,计划对金龙岗路等交通要道由双向通行改为单项通行,为调查金龙岗路的通行能力,交警部门将某一天24小时分为六个时段,分别是[0,4)…[20,24)(小时),并记录每一时段通行此路的机动车的辆数,共计为600辆,绘制如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求在时段[12,16)上通行此路车辆的频率;
(2)用分层抽样的方法在[8,16)时间段通行此路的车辆中抽取一个容量为6的样本,从这个样本中任取2辆车,求在此时间段[12,16)上至多有辆车通行的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$表示的平面区域的面积为(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.关于x的方程2x2+7mx+5m2+1=0的两个实根中,一个比2大,另一个比2小,求实数m的取值范围.

查看答案和解析>>

同步练习册答案