精英家教网 > 高中数学 > 题目详情
3.已知f(x)是定义在R上的奇函数,记其导函数为f′(x),f(1)=0,且当x>0时,f′(x)>$\frac{f(x)}{x}$恒成立,则不等式x2f(x)>0的解集是(-1,0)∪(1,+∞).

分析 把f′(x)>$\frac{f(x)}{x}$ 化为[$\frac{f(x)}{x}$]′>0;可判断函数g(x)=$\frac{f(x)}{x}$在(0,+∞)内单调递增;再由f(1)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(-∞,0)内的正负性.则x2f(x)>0?f(x)>0的解集即可求得.

解答 解:令g(x)=$\frac{f(x)}{x}$,则g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$.
∵当x>0时,有 f′(x)>$\frac{f(x)}{x}$恒成立,即xf′(x)-f(x)>0,
∴g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$>0
∴g(x)在(0,+∞)内单调递增.
∵f(1)=0,∴g(1)=0
∴当x∈(0,1)时,g(x)=$\frac{f(x)}{x}$<0,∴f(x)<0;
当x∈(1,+∞)时,g(x)=$\frac{f(x)}{x}$>0.∴f(x)>0.
又∵f(x)是定义在R上的奇函数,
∴当x∈(-1,0)时,f(x)>0;
当x∈(-∞,-1)时,f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
故答案为:(-1,0)∪(1,+∞).

点评 本题主要考查了函数单调性与奇偶性的应用.在判断函数的单调性时,常可利用导函数来判断.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.sin330°+cos(-780°)+tan105°=$-2-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sinα+cosα=-$\frac{1}{5}$,且π<α<2π,则:
(1)sinα•cosα=-$\frac{12}{25}$;(2)sinα-cosα=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2cos(2x+$\frac{π}{6}$).
(1)求函数的对称中心;
(2)求函数在[0,$\frac{π}{2}$]上的值域;
(3)解不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2015年6号台风“红霞”5月12日上午8点在日本本州和歌由县西南东海东部海面登陆,某渔船丙由于发动机故障急需救援,如图,正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲140km的C处,渔政船乙在渔政船甲的南偏东西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行60km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿着直线BC航行前去救援渔船丙),此时B、D两处相距84km,问渔政船乙要航行多少距离才能到达渔船所在的位置C处实施营救.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,焦点在y轴上,椭圆的上、下焦点分别为F1、F2,且椭圆的上焦点到直线x+$\sqrt{3}$y+1=0的距离等于椭圆的长半轴长,且直线l过椭圆的左顶点.求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.点(4,a)到直线4x-3y-1=0的距离不大于4,则a的取值范围为[$\frac{5}{3}$,$\frac{35}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinα-cosα=$\frac{1}{2}$,α∈($\frac{π}{4},\frac{π}{2}$),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x(x-a).
(1)当x∈[0,1]时,f(x)有最小值-3,求实数a的值;
(2)若函数g(x)=f(x)-lnx有零点,求a的最小值.

查看答案和解析>>

同步练习册答案