精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式则f(数学公式)的值是________.


分析:当x>1时,f(x)=x2-x-3; 当x≤1时,f(x)=1-x2,故此本题先求,再将所求得的值代入x>1时解析式求值即可.
解答:当x>1时,f(x)=x2-x-3,则 f(3)=32-3-3=3,

当x≤1时,f(x)=1-x2
∴f()=f()=1-=
故答案为:
点评:本题考查分段复合函数求值,根据定义域选择合适的解析式,由内而外逐层求解.属于考查分段函数的定义的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)

②计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且当x∈(0,
3
2
)
时,f(x)=2-x+1,则f(8)=(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为______;
②计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=______.

查看答案和解析>>

同步练习册答案