精英家教网 > 高中数学 > 题目详情

命题“?x∈R,使得x2>0”的否定是________.

?x∈R,使得x2≤0
分析:根据命题“?x∈R,使得x2>0”是特称命题,其否定为全称命题,即?x∈R,使得x2≤0,从而得到答案.
解答:∵命题“?x∈R,使得x2>0”是特称命题
∴否定命题为:?x∈R,使得x2≤0
故答案为:?x∈R,使得x2≤0.
点评:这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③若p(x)=ax2+2x+1>0,则“?x∈R,p(x)是真命题”的充要条件为 a>1;
④若函数f(x)为R上的奇函数,当x≥0,f(x)=3x+3x+a,则f(-2)=-14;
⑤不等式
x+5
(x-1)2
≥2
的解集是[-
1
2
,3]

其中所有正确的说法序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,使得x2+2x-5=0”的否定是
?x∈R,使得x2+2x-5≠0
?x∈R,使得x2+2x-5≠0

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“?x∈R,使得x2+(a-1)x+1<0”否定是
?x∈R,使得x2+(a-1)x+1≥0
?x∈R,使得x2+(a-1)x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•聊城一模)下列说法错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)下面给出的四个命题中:
①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为(x-1)2+y2=1;
②若m=-2,则直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直;
③命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④将函数y=sin2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)的图象.
其中是真命题的有
①②③
①②③
(将你认为正确的序号都填上).

查看答案和解析>>

同步练习册答案