【题目】函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
)的图象与x轴相邻两个交点间的距离为
,且图象上一个最低点为M(
,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)当x∈[
,
]时,求f(x)的值域.
【答案】解:(Ⅰ)由图象与x轴相邻两个交点间的距离为
,
=
=
,∴ω=2,
再根据图象上一个最低点为M(
,﹣2),可得A=2,2×
+φ=
,φ=
,
∴f(x)=2sin(2x+
).
(Ⅱ)令2kπ﹣
≤2x+
≤2kπ+
,求得kπ﹣
≤x≤kπ+
,k∈Z;
(Ⅲ)当x∈[
,
]时,
≤2x+
≤
,∴sin(2x+
)∈[﹣1,2],故函数的值域为[﹣1,2]
【解析】(Ⅰ)由周期求得ω,由最低点的坐标结合五点法作图求得A及φ的值,可得函数f(x)的解析式.(Ⅱ)由条件利用正弦函数的单调性,求得f(x)的单调递增区间.(Ⅲ)当x∈[
,
],利用正弦函数的定义域和值域,求得f(x)的值域.
科目:高中数学 来源: 题型:
【题目】如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为( ) ![]()
A.20
B.25
C.22.5
D.22.75
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若cos
=
,
π<x<
π,求
的值. 【答案】解:由
π<x<
π,得
π<x+
<2π,
又cos
=
,∴sin
=﹣
;
∴cosx=cos
=cos
cos
+sin
sin
=﹣
,
从而sinx=﹣
,tanx=7;
故原式=
;
(1)已知函数f(x)=2
sinxcosx+2cos2x﹣1(x∈R),若f(x0)=
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年,由于环境的污染,雾霾越来越严重,某环保公司销售一种PM2.5颗粒物防护口罩深受市民欢迎.已知这种口罩的进价为40元,经销过程中测出年销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售这种口罩的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5. ![]()
(I)求y关于x的函数关系;
(II)写出该公司销售这种口罩年获利W(万元)关于销售单价x(元)的函数关系式
(年获利=年销售总金额﹣年销售口罩的总进价﹣年总开支金额);当销售单价x为何值时,年获利最大?最大获利是多少?
(III)若公司希望该口罩一年的销售获利不低于57.5万元,则该公司这种口罩的销售单价应定在什么范围?在此条件下要使口罩的销售量最大,你认为销售单价应定为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足
=
+
. (Ⅰ)求证:A,B,C三点共线;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0,
],f(x)=
﹣(2m2+
)|
|的最小值为
,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥S﹣ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
,M为AB的中点. ![]()
(1)求证:AC⊥SB;
(2)求二面角S﹣CM﹣A的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为( ) ![]()
A.30°
B.60°
C.45°
D.90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com