| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(千万元) | 2 | 3 | 3 | 4 | 5 |
分析 (1)根据所给的这组数据,写出利用最小二乘法要用的量的结果,把所求的这些结果代入公式求出线性回归方程的系数,进而求出a的值,写出线性回归方程.
(2)根据上一问做出的线性回归方程,把x=4的值代入方程,估计出对应的y的值.
解答 解:(1)∵$\overline{x}$=$\frac{1}{5}$(3+5+6+7+9)=6,$\overline{y}$=$\frac{1}{5}$(2+3+3+4+5)=3.4,
$\sum _{i=1}^{5}$xi2=32+52+62+72+92=200,
$\sum _{i=1}^{5}$xiyi=3×2+5×3+6×3+7×4+9×5=112,
∴$\hat{b}$=$\frac{\underset{i=1}{\sum^{5}}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\underset{i=1}{\sum^{5}}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$=$\frac{112-5×6×3.4}{200-5×6×6}$=0.5,
$\hat{a}$=$\overline{y}$-0.5$\overline{x}$=3.4-0.5×6=0.4
∴回归直线方程为$\hat{y}$=0.5x+0.4;
(2)当x=4时,$\hat{y}$=0.5×4+0.4=2.4,
∴当销售额为4(千万元)时,估计利润额2.4千万元.
点评 本题考查线性回归方程的求法和应用,是一个基础题,这种题目解题的关键是求出最小二乘法所要用到的量,数字的运算不要出错.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{EF}$=$\frac{1}{2}(\overrightarrow a+\overrightarrow b+\overrightarrow c+\overrightarrow d)$ | B. | $\overrightarrow{EF}$=$\frac{1}{2}(\overrightarrow a-\overrightarrow b+\overrightarrow c-\overrightarrow d)$ | C. | $\overrightarrow{EF}$=$\frac{1}{2}(-\overrightarrow a-\overrightarrow b+\overrightarrow c+\overrightarrow d)$ | D. | $\overrightarrow{EF}$=$\frac{1}{2}(\overrightarrow a+\overrightarrow b-\overrightarrow c-\overrightarrow d)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∫${\;}_{0}^{1}$ldx=0 | B. | ${∫}_{0}^{1}$exdx=e | C. | ${∫}_{1}^{3}$xdx=2 | D. | ${∫}_{1}^{e}$$\frac{1}{x}$dx=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\widehat{y}$=1.23x+0.08 | B. | $\widehat{y}$=0.08x+1.23 | C. | $\widehat{y}$=4x+5 | D. | $\widehat{y}$=4x+1.23 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (-1,3) | C. | (1,1) | D. | (-1,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com