精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{2x-3}{x+1}$的图象关于点P中心对称,则点P的坐标是(-1,2).

分析 由题意,对函数进行化简,可得f(x)=$\frac{2x-3}{x+1}$=2+$\frac{-5}{x+1}$,即可求得点P的坐标.

解答 解:f(x)=$\frac{2x-3}{x+1}$=2+$\frac{-5}{x+1}$,
∵函数f(x)=$\frac{2x-3}{x+1}$的图象关于点P中心对称,
∴点P的坐标是(-1,2),
故答案为(-1,2).

点评 本题考查函数的图象关于点成中心对称,可以采用分离常数法来解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)若点E是线段DB上的中点,求三棱锥E-ABM的体积V1与四棱锥D-ABCM的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.双曲线$\frac{x^2}{a^2}-\frac{y^2}{7}=1$(a>0)的右焦点为圆(x-4)2+y2=1的圆心,则此双曲线的离心率为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线方程为$y=±2\sqrt{2}x$,则此双曲线的离心率等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=2|x|C.y=ln$\frac{1}{|x|}$D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m,n是两条不同的直线,α,β是两个不同的平面(  )
A.若m∥α,m∥β,则α∥βB.若m⊥α,m∥β,则α∥βC.若m⊥α,n∥α,则m∥nD.若m⊥α,n⊥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0}),{F_1}$为左焦点,A为右顶点,B1,B2分别为上、下顶点,若F1,A,B1,B2四点在同一圆上,则此椭圆的离心率为(  )
A.$\frac{{\sqrt{3}-1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线与椭圆$\frac{x^2}{16}+\frac{y^2}{3}=1$有相同的焦点,且其中一条渐近线为$y=\frac{3}{2}x$,则该双曲线的标准方程是$\frac{x^2}{4}-\frac{y^2}{9}=1$.

查看答案和解析>>

同步练习册答案