精英家教网 > 高中数学 > 题目详情
5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0}),{F_1}$为左焦点,A为右顶点,B1,B2分别为上、下顶点,若F1,A,B1,B2四点在同一圆上,则此椭圆的离心率为(  )
A.$\frac{{\sqrt{3}-1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由题意画出图形,结合已知可得B1F1⊥B1A,即${k}_{{B}_{1}{F}_{1}}•{k}_{{B}_{1}A}=-1$,由此得到关于e的方程求解.

解答 解:如图,

由F1,A,B1,B2四点在同一圆上,可得
B1F1⊥B1A,即${k}_{{B}_{1}{F}_{1}}•{k}_{{B}_{1}A}=-1$,
∵B1(0,b),F1(-c,0),A(a,0),
∴$\frac{b}{c}•(-\frac{b}{a})=-1$,即$\frac{{b}^{2}}{ac}=\frac{{a}^{2}-{c}^{2}}{ac}=1$,
∴e2+e-1=0,解得e=$\frac{\sqrt{5}-1}{2}$.
故选:B.

点评 本题考查椭圆的简单性质,考查了直线垂直与斜率的关系,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知斜率$k=\frac{1}{2}$且过点A(7,1)的直线l1与直线l2:x+2y+3=0相交于点M.
(Ⅰ)求以点M为圆心且过点B(4,-2)的圆的标准方程C;
(Ⅱ)求过点N(4,2)且与圆C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{2x-3}{x+1}$的图象关于点P中心对称,则点P的坐标是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三棱柱ABC-A1B1C1中,△ABC是正三角形,且A1A=AB,顶点A1在底面ABC上的射影是△ABC的中心.
(1)求证:AA1⊥BC;
(2)求直线A1B与平面BCC1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$,则|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中假命题是(  )
A.?x0∈R,lnx0<0B.?x∈(-∞,0),ex>0
C.?x>0,5x>3xD.?x0∈(0,+∞),2<sinx0+cosx0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.点P从点O出发,按逆时针方向沿周长为l的正方形运动一周,记O,P两点连线的距离y与点P走过的路程x为函数f(x),则y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,网格纸上每个小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线y=kx+3(k≠0)与圆(x-3)2+(y-2)2=4相交于A、B两点,若$|AB|=2\sqrt{3}$,则k的值为$-\frac{3}{4}$.

查看答案和解析>>

同步练习册答案