精英家教网 > 高中数学 > 题目详情
10.已知{an}是等比数列,下列命题中不正确的是(  )
A.若an>0,(n∈N*),则{lgan}是等差数列
B.若an>0,(n∈N*),则$\frac{{a}_{1}+{a}_{n+2}}{2}$≥$\sqrt{{a}_{2}{a}_{n+1}}$
C.an+1一定是an与an+2的等比中项
D.an-r与an+r(r<n,r,n∈N*)的等比中项一定是an

分析 由等比数列的性质和等比中项,结合基本不等式逐个选项验证可得.

解答 解:选项A正确,lgan+1-lgan=lg$\frac{{a}_{n+1}}{{a}_{n}}$=lgq为与n无关的常数,故{lgan}是等差数列;
选项B正确,由基本不等式可得$\frac{{a}_{1}+{a}_{n+2}}{2}$≥$\sqrt{{a}_{1}{a}_{n+2}}$,由等比数列的性质可得$\sqrt{{a}_{1}{a}_{n+2}}$=$\sqrt{{a}_{2}{a}_{n+1}}$,故$\frac{{a}_{1}+{a}_{n+2}}{2}$≥$\sqrt{{a}_{2}{a}_{n+1}}$;
选项C正确,由等比数列的性质可得an+12=anan+2,即an+1一定是an与an+2的等比中项;
选项D错误,(±an2=an-ran+r,故an-r与an+r(r<n,r,n∈N*)的等比中项可能为-an
故选:D.

点评 本题考查等比数列的通项公式,涉及等比数列的性质和等比基本不等式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=3-x-1的定义域、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平面内的三个向量,其中$\overrightarrow{a}$=(1,2).
(1)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$$∥\overrightarrow{a}$,求向量$\overrightarrow{c}$;
(2)若|$\overrightarrow{b}$|=$\frac{3\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn=(n+1)2+c,试探究{an}是等差数列的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知α是锐角,$\overrightarrow{a}$=($\frac{3}{4}$,sinα),$\overrightarrow{b}$=(cosα,$\frac{1}{3}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则α为15或75度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四个数排成一列,前三个数成等差数列,后三个数成等比数列,且首末两数之和为22,中间两数之和为20,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设0°<θ<360°,角6θ与角θ的终边相同,求角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线Ax+By+C=0与两坐标轴都相交的条件是B≠0,A≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是一个等比数列,在下表中填入适当的数.
 a1 a3 a5a7
 2  8  
    0.2

查看答案和解析>>

同步练习册答案