如图所示,在长方体中,,,是棱上一点,
(1)若为CC1的中点,求异面直线A1M和C1D1所成的角的正切值;
(2)是否存在这样的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,请说明理由。
(1)。(2)
解析试题分析:(1)由于C1D1∥B1A1故根据异面直线所成角的定义可知∠MA1B1为异面直线A1M和C1D1所成的角然后在解三角形MA1B1求出∠MA1B1的正切值即可.
(Ⅱ)可根据题中条件设出点M的坐标,然后根据面面垂直,计算得出A1B1⊥BM,BM⊥B1M然后再根据面面垂直的判定定理即可得证.
解:(1)∵C1D1∥A1B1
∴∠B1A1M即为直线A1M和C1D1所成的角
∴。
(2)建立坐标系:,,,,
在平面上选择向量,,设法向量
由,解得,取,得
在平面上选择向量,,设法向量
由,解得,取,得,
由,,解得,所以
考点:本试题主要考查了考察异面直线所成角的定义以及面面垂直的证明,属常考题型,较难.
点评:解题的关键是要掌握异面直线所成角的定义(即将异面直线转化为相交直线所成的角)和面面垂直的判定定理。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,已知几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母;(2分)
(2)求这个几何体的表面积及体积;(6分)
(3)设异面直线、所成角为,求.(6分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。
(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)如图,在四棱锥中,底面是矩形,平面,与平面所成角的正切值依次是和,,依次是的中点.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com