精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=sin(2ωx+\frac{π}{6})$,其最小正周期为$\frac{π}{2}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间$[{0,\frac{π}{2}}]$上有且只有一个实数解,求实数k的取值范围.

分析 (1)由周期求得ω的值,可得函数f(x)的解析式.
(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)=sin(2x-$\frac{π}{3}$),由题意可得函数g(x)与y=-k在区间[0,$\frac{π}{2}$]上有且只有一个交点,结合正弦函数的图象可得k的范围.

解答 解:(1)由题意知函数$f(x)=sin(2ωx+\frac{π}{6})$,其最小正周期为$\frac{π}{2}$=$\frac{2π}{2ω}$,∴ω=2.
所以f(x)=sin(4x+$\frac{π}{6}$).
(2)将f(x)的图象向右平移个$\frac{π}{8}$个单位后,得到y=sin(4x-$\frac{π}{3}$) 的图象,
再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin(2x-$\frac{π}{3}$)的图象.
所以g(x)=sin(2x-$\frac{π}{3}$).
因为0≤x≤$\frac{π}{2}$,所以-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,
g(x)+k=0在区间[0,$\frac{π}{2}$]上有且只有一个实数解,即函数g(x)与y=-k在区间[0,$\frac{π}{2}$]上有且只有一个交点,
由正弦函数的图象可知-$\frac{\sqrt{3}}{2}$≤k<$\frac{\sqrt{3}}{2}$或-k=1,即-$\frac{\sqrt{3}}{2}$<k≤$\frac{\sqrt{3}}{2}$ 或k=-1.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某企业投资1千万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金100万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.设经过n年后该项目的资金为an万元.
(1)写出数列{an}的前三项a1,a2,a3,并猜想写出通项an
(2)求经过多少年后,该项目的资金可以达到或超过2千万元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的方程sin2x+sinx-1+m=0有解,则实数m的取值范围为[-1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(Ⅰ)计算($\frac{1-i}{1+i}$)2
(Ⅱ)已知复数z满足:|z|=1+3i-z,求$\frac{(1+i)^{2}(3+4i)^{2}}{2z}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点P在曲线y=x3-x+$\frac{2}{3}$上移动,设点P处切线的倾斜角为α,则α的取值范围是(  )
A.[0,$\frac{π}{2}$]B.[0,$\frac{π}{2}$]∪(-$\frac{π}{2}$,0)C.[$\frac{3π}{4}$,π]D.[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sin2x+$\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递减区间;
(Ⅲ)若函数g(x)=f(x)-k在$[0,\frac{π}{6}]$上有两个不同的零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-ax-1.
(1)当a=e时,求f(x)的单调区间;
(2)若对任意x≥0,都有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为5、8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设变量x,y满足$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≥1}\\{3x-y≤3}\end{array}\right.$,则w=4x+y的最大值为(  )
A.4B.11C.12D.14

查看答案和解析>>

同步练习册答案