精英家教网 > 高中数学 > 题目详情
14.若关于x的方程sin2x+sinx-1+m=0有解,则实数m的取值范围为[-1,$\frac{5}{4}$].

分析 由题意可得m=-sin2x-sinx+1=-${(sinx+\frac{1}{2})}^{2}$+$\frac{5}{4}$,再利用二次函数的性质求得m的范围.

解答 解:关于x的方程sin2x+sinx-1+m=0有解,即 m=-sin2x-sinx+1=-${(sinx+\frac{1}{2})}^{2}$+$\frac{5}{4}$,
故当sinx=-$\frac{1}{2}$时,m取得最大值为$\frac{5}{4}$;当sinx=1时,m取得最小值为-1,
故实数m的取值范围为[-1,$\frac{5}{4}$],
故答案为:[-1,$\frac{5}{4}$].

点评 本题主要考查二次函数的性质,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知顶点在原点O,准线方程是y=-1的抛物线与过点M(0,1)的直线l交于A,B两点,若直线OA和直线OB的斜率之和为1
(Ⅰ)求此抛物线的标准方程;
(Ⅱ)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求方程f($\frac{3x}{4}$-$\frac{π}{8}$)=f($\frac{π}{2}$)的解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.满足$\sqrt{3}z+iz=4(\sqrt{3}-i)$的复数z的共轭复数$\overline z$=2+2$\sqrt{3}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$a.
(1)求证:EF∥平面PAD;
(2)求三棱锥E-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x2-y2+2xyi=2i,求实数x、y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.E、F分别是边长为1的正方形ABCD边BC、CD的中点,沿线AF,AE,EF折起来,则所围成的三棱锥的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=sin(2ωx+\frac{π}{6})$,其最小正周期为$\frac{π}{2}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间$[{0,\frac{π}{2}}]$上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,矩形ABCD中,BC⊥平面ABE,且BC=4,AE=EB,F为CE的中点,且BF⊥平面ACE,B∩AC=G  
(1)求证:AE∥平面BFD;
(2)求证:AE⊥平面BCE;
(3)求三棱锥E-ADC的体积.

查看答案和解析>>

同步练习册答案