精英家教网 > 高中数学 > 题目详情
7.某次运动会甲、乙两名射击运动员成绩如图所示,甲、乙的平均数分别为为 $\overline{{x}_{甲}}$、$\overline{{x}_{乙}}$,方差分别为s2,s2,则(  )
A.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s2>s2B.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s2<s2
C.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s2>s2D.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s2<s2

分析 由茎叶图知甲的成绩位于茎叶图左上方,乙的成绩位于茎叶图的右下方,甲的成绩较分散,乙的成绩相对集中,由此能求出结果.

解答 解:∵某次运动会甲、乙两名射击运动员成绩如图所示,
甲、乙的平均数分别为为 $\overline{{x}_{甲}}$、$\overline{{x}_{乙}}$,方差分别为s2,s2
由茎叶图知甲的成绩位于茎叶图左上方,乙的成绩位于茎叶图的右下方,
甲的成绩较分散,乙的成绩相对集中,
∴$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s2>s2
故选:C.

点评 本题考查两组数据的平均数和方差的比较,是基础题,解题时要认真审题,注意茎叶图性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若复数z满足$z+i=\frac{2-i}{i}$,则复数z的模为(  )
A.10B.$\sqrt{10}$C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两个线性相关变量满足如下关系:则y对x的回归方程是(  )
x23456
y2.23.85.56.57.0
A.$\widehat{y}$=0.87x+0.32B.$\widehat{y}$=3.42x-3.97C.$\widehat{y}$═1.23x+0.08D.$\widehat{y}$═2.17x+32.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC1和△ABC2是两个腰长均为1的等腰直角三角形,当二面角C1-AB-C2为60°时,点C1和C2之间的距离等于$\sqrt{2},1,\frac{{\sqrt{2}}}{2}$.(请写出所有可能的值)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)是定义在正整数集上的函数,且满足:对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立.则下列命题正确的是(  )
A.若f(3)≥9成立,则对于任意k∈N*,均有f(k)≥k2成立
B.若f(3)≥9成立,则对于任意k≥3,k∈N*,均有f(k)<k2成立
C.若f(3)≥9成立,则对于任意k<3,k∈N*,均有f(k)<k2成立
D.若f(3)=9成立,则对于任意k≥3,k∈N*,均有f(k)≥k2成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=|x-2|+|x+2|.
(1)求不等式f(x)≥6的解集;
(2)若不等式f(x)<a+x的解集不为∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,sin2B=sinAsinC.
(1)若$\frac{1}{tanA}$,$\frac{\sqrt{3}}{3}$,$\frac{1}{tanC}$成等差数列,求cosB的值;
(2)若$\frac{BC}{sinA}$=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线l∥平面α,直线a?α,则直线l与直线a的位置关系是(  )
A.l∥aB.l与a没有公共点C.l与a相交D.l与a异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前n和为Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,则a5+S4=(  )
A.39B.45C.50D.55

查看答案和解析>>

同步练习册答案