精英家教网 > 高中数学 > 题目详情
设F1,F2为椭圆左、右焦点,过椭圆中心任作一条直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大时,的值等于( )
A.0
B.1
C.2
D.4
【答案】分析:可得a,b,c的值,可得P,Q恰好是椭圆的短轴的端点时满足题意,由此可得PF1,PF2的长度和夹角,由数量积的定义可得.
解答:解:由于椭圆方程为,故a=2,b=,故c==1
由题意当四边形PF1QF2的面积最大时,点P,Q恰好是椭圆的短轴的端点,此时PF1=PF2=a=2,
由于焦距|F1F2|=2c=2,故△PF1F2为等边三角形,故∠F1PF2=60°,
=2×2×cos60°=2
故选C
点评:本题考查椭圆的简单性质,判断出椭圆的四边形PF1QF2的面积最大时的情形是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x2
a2
+
y2
b2
=1
 (a>b>0)的离心率e=
6
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求椭圆的方程;
(2)设F1、F2为椭圆的左、右焦点,过F2作直线交椭圆于P、Q两点,求△PQF1的内切圆半径r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设F1,F2为椭圆C:
x2
6m2
+
y2
2m2
=1(m>0)的左、右焦点,点P⊆C且
PF1
PF2
=0,|
PF1
|•|
PF2
|=4(1)求椭圆C的方程;
(2)作以F2为圆心,以1为半径的圆,过动点Q作圆F2的切线,切点为且使|
QF1
|=
2
|
QM
|,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2为椭圆
x2
4
+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,
PF1
PF2
的值等于(  )
A、0B、2C、4D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆
x2
4
+
y2
3
=1
左、右焦点,过椭圆中心任作一条直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大时,
PF1
PF2
的值等于(  )

查看答案和解析>>

同步练习册答案