精英家教网 > 高中数学 > 题目详情
设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则(  )
分析:根据所给的关于向量的等式,把等式右边二倍的向量拆开,一个移项一个和左边移来的向量进行向量的加减运算,变形整理,得到与选项中一致的形式,得到结果.
解答:解:∵
BC
+
BA
=2
BP

.
BC
-
BP
=
BP
-
BA

PC
=
AP

PC
-
AP
=
0

PC
+
PA
=
0

故选A.
点评:本题考查了向量的加法运算和平行四边形法则,可以借助图形解答.向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好向量的加减运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则(  )
A、
PA
+
PB
=
0
B、
PC
+
PA
=
0
C、
PB
+
PC
=
0
D、
PA
+
PB
+
PC
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则
PC
+
PA
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,且
BC
+
BA
=3
BP
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则(  )
A、
PA
+
PB
=
0
B、
PC
+
PB
=
0
C、
PC
+
PA
=
0
D、
PC
+
PA
+
PB
=
0

查看答案和解析>>

同步练习册答案