精英家教网 > 高中数学 > 题目详情
17.设数列{an}的通项公式为an=2n-7(n∈N*)则|a1|+|a2|+…+|a7|=(  )
A.7B.0C.18D.25

分析 |a1|+|a2|+…+|a7|=-a1-a2-a3+a4+a5+a6+a7,由此能求出结果.

解答 解:∵数列{an}的通项公式为an=2n-7(n∈N*),
∴由an=2n-7≥0,
得n≥$\frac{7}{2}$,
∴|a1|+|a2|+…+|a7|=-a1-a2-a3+a4+a5+a6+a7
=-(2×1-7)-(2×2-7)-(2×3-7)+2×4-7+2×5-7+2×6-7+2×7-7
=25.
故选:D.

点评 本题考查数列的前7项的绝对值的求法,是基础题,解题时要认真审题,注意数列的通项公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知正四棱柱ABCD-A1B1C1D1中,二面角A-A1C-D1的余弦值为$-\frac{{\sqrt{10}}}{5}$.
(1)求证:BD⊥A1C1
(2)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出$\frac{CP}{{P{C_1}}}$的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα=2则cos($\frac{2015π}{2}$-2α)的值为(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算:${(2\frac{1}{4})^{\frac{1}{2}}}-{(3\frac{3}{8})^{-\frac{2}{3}}}$=$\frac{19}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.己知命题p:“?x0>0,3${\;}^{{x}_{0}}$=2”,则¬p是?x>0,3x≠2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆x2+y2-2x-4y+3=0关于直线ax+by-1=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为,9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos(-$\frac{9π}{4}$)-sin(-$\frac{9π}{4}$)的值是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数y=lgx的定义域为集合A,集合B={x|x2-x≤0},则A∩B=(  )
A.(0,+∞)B.[0,1]C.[0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=(x-2)2+1的图象向左、向下分别平移2个单位,得到y=f(x)的图象,则函数f(x)=y=x2-1.

查看答案和解析>>

同步练习册答案