精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=2|x﹣4|﹣logax+2无零点,则实数a的取值范围为;
若函数f(x)=|2x﹣2|﹣b有两个零点,则实数b的取值范围是

【答案】( ,+∞);(0,2)
【解析】解:⑴函数f(x)=2|x﹣4|﹣logax+2无零点,即方程2|x﹣4|﹣logax+2=0无实根,

也就是y=2|x﹣4|+2与y=logax的图象无交点,

作出两函数图象如图:

要使y=2|x﹣4|+2与y=logax的图象无交点,则loga4<3,即a>

所以答案是:( ,+∞);

⑵函数f(x)=|2x﹣2|﹣b有两个零点,即方程函数|2x﹣2|﹣b=0有两个根,

也就是y=|2x﹣2|与y=b有两个交点,

如图:

由图可知,要使y=|2x﹣2|与y=b有两个交点,则0<b<2.

所以答案是:(0,2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集为(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn . (Ⅰ)求an及Sn
(Ⅱ)令bn= (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若f(a2﹣6)+f(﹣a)>0,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)求f(x)的周期及其图象的对称中心;
(2)△ABC中,角A、B、C所对的边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1、F2分别为椭圆Γ: =1(a>b>0)的左、右两个焦点,若椭圆上一点M(1, )到两个焦点的距离之和等于4.又已知点A是椭圆的右顶点,直线l交椭圆Γ于E、F两点(E、F与A点不重合),且满足AE⊥AF. (Ⅰ) 求椭圆的标准方程;
(Ⅱ) O为坐标原点,若点P满足2 ,求直线AP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数y=f(x)满足f(0)=3,且f(x+1)﹣f(x)=2x﹣1.
(1)求f(x)的解析式;
(2)求函数在区间[﹣2,t](t>﹣2)上的最大值g(t);
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2bx,g(x)=|x﹣1|,若对任意x1 , x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)= x2+10x(万元);当年产量不小于80千件时C(x)=51x+ ﹣1450(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?

查看答案和解析>>

同步练习册答案