精英家教网 > 高中数学 > 题目详情
已知直线轴交于点,与直线交于点,椭圆为左顶点,以为右焦点,且过点,当时,椭圆的离心率的范围是
A.B.C.D.
D

试题分析:因为给定的直线轴交于点,与直线交于点,椭圆为左顶点,以为右焦点,且过点(c,k(c+a))设椭圆的方程为
,则可知有,同时由于点M在曲线上可知,,同时利用勾股定理得到,联立方程组得到关系式,进而利用,得到离心率的范围,,故选D.
点评:解决该试题的关键是对于直线的斜率与椭圆的参数a,b,c的关系式的运用,结合椭圆的方程来分析得到,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设为抛物线的焦点,为抛物线上任意一点,已为圆心,为半径画圆,与轴负半轴交于点,试判断过的直线与抛物线的位置关系,并证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足=0,点N( 0,3 )到椭圆上的点的最远距离为5
(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,若的大小为                      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中 ,,以点为一个焦点作一个椭圆,使这个椭圆
的另一焦点在边上,且这个椭圆过两点,则这个椭圆的焦距长为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知点为抛物线: 的焦点,为抛物线上的点,且

(Ⅰ)求抛物线的方程和点的坐标;
(Ⅱ)过点引出斜率分别为的两直线与抛物线的另一交点为与抛物线的另一交点为,记直线的斜率为
(ⅰ)若,试求的值;
(ⅱ)证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的方程为,过左焦点F1作斜率为的直线交双曲线的右支于点P,且轴平分线段F1P,则双曲线的离心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.

查看答案和解析>>

同步练习册答案