精英家教网 > 高中数学 > 题目详情
(本题满分12分)
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
(1) y2=2x (2)关键证明AB的中点到准线的距离等于AB的一半。

试题分析:解:(1)设抛物线y2=2px(p>0),将点(2,2)代入得p=1.
∴y2=2x为所求抛物线的方程.
(2)证明:设lAB的方程为:x=ty+,代入y2=2x得:y2-2ty-1=0,设AB的中点为M(x0,y0),则y0=t,x0.
∴点M到准线l的距离d=x0=1+t2.又AB=2x0+p=1+2t2+1=2+2t2,∴d=AB,故以AB为直径的圆与准线l相切.
点评:求抛物线的方程,前提是设抛物线的方程,而设置抛物线可结合焦点,像本题通过画图,知道抛物线的焦点在x轴的正半轴上,因而可令抛物线的方程为y2=2px(p>0)(式子中的x 对应x轴,2px前面是正的对应正半轴)。第二题涉及直线与抛物线这两种曲线,当两者相交时,常常在联立方程组后,用到根与系数的关系式:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知直线轴交于点,与直线交于点,椭圆为左顶点,以为右焦点,且过点,当时,椭圆的离心率的范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线方程为,则其离心率为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:与直线L:仅有一个公共点,求m的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点A(,0)作椭圆的弦,弦中点的轨迹仍是椭圆,记为,若的离心率分别为,则的关系是(     )。
A.B.=2
C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点的坐标分别是,直线相交于点,且直线与直线的斜率之差是,则点的轨迹方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆的中心在坐标原点0,顶点分别是A1, A2, B1, B2,焦点分别为F1 ,F2,延长B1F2 与A2B2交于P点,若为钝角,则此椭圆的离心率的取值范围为
A.(0,B.(,1)
C.(0,D.(,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知,O为坐标原点,动点E满足:

(Ⅰ) 求点E的轨迹C的方程;
(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的右焦点为,则该双曲线的渐近线方程为(    )                         
A.B.C.D.

查看答案和解析>>

同步练习册答案