精英家教网 > 高中数学 > 题目详情
20.指出下列各题中,命题p是q的什么条件:
(1)p:△ABC是等腰三角形,q:△ABC是等腰直角三角形;
(2)设a>b>0,命题p:c>d>0,q:ac>bd.

分析 根据充要条件的定义,分别判断两个命题的充要性,综合可得答案.

解答 解:(1)若△ABC是等腰三角形,则△ABC不一定是等腰直角三角形,故p是q的不充分条件;
若△ABC是等腰直角三角形,则△ABC一定是等腰三角形,故p是q的必要条件;
故p是q的必要不充分条件;
(2)∵a>b>0,
若c>d>0,则ac>bd成立,故p是q的充分条件;
若ac>bd,则若c>d>0不一定成立,故p是q的不必要条件;
故p是q的充分不必要条件;

点评 本题考查的知识点是充要条件的定义,熟练掌握并正确理解充要条件的定义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\sqrt{lg({2x-1})}$,求函数的定义域,并判断它的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的导数:
(1)y=sin43xcos34x;
(2)y=2(${e}^{\frac{x}{2}}+{e}^{{-}^{\frac{x}{2}}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+x,g(x)=$\frac{1}{3}$a2x3+$\frac{1}{2}$bx2+x,其中a>0,若函数g(x)存在两个极值点x1,x2,且点x1<x2
(1)求证:函数f(x)的导函数f′(x)在(-1,1)上是单调函数;
(2)当a>1时,函数f(x)也存在两个极值点x3,x4,且x3<x4,是判断x1,x2,x3,x4的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)=$\left\{\begin{array}{l}{\frac{|{x}^{2}-1|}{x-1},x≠1}\\{2,x=1}\end{array}\right.$,则在点x=1处,函数f(x)(  )
A.不连续B.连续不可导
C.可导且导数不连续D.可导且导数连续

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知an=2n(n∈N+),则a1a2+a2a3+a3a4+…+anan+1=$\frac{4n(n+1)(n+2)}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数y=$\frac{2}{{2}^{x}+1}$+m的图象关于原点对称,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给定集合A={a1,a2,a3,…,an}(n∈N*?,n≥3),定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示,若A={2,4,6,8},则L(A)=5;若集合A={a1,a2,a 3,…,a 100},则L(A)的最小值为(  )
A.5050B.4950C.197D.195

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,该几何体的体积是(  )
A.12B.18C.24D.36

查看答案和解析>>

同步练习册答案